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Numerical Stability and Numerical Dispersion

of a Compact 2-D/FDTD Method Used for

the Dispersion Analysis of Waveguides
Andreas C. Cangellaris, Member, IEEE

Abstract— The stability condition is derived for the compact

two-dimensional FDTD (2-D/FDTD) scheme which was recently
proposed for the dispersion analysis of waveguiding structures.

It is shown that the upper limit of the Courant number depends
on the desirable propagation constant /9 and is atways smaller

than the one for the standard FDTD scheme in two dimensions.

The dispersion equatiou for the numerical scheme is derived also
and is used to examine the impact of grid size on the accuracy
of the calculated eigenvalues (frequencies) for the dominant and

higher order modes.

I. INTRODUCTION

I N a recent paper [1], a compact 2-D/FDTD method was

proposed for the dispersion analysis of uniform waveg-

uiding structures. The proposed method, which is similar to

the method presented in [2], takes advantage of the fact that

for propagating modes the field variation along the axis of

the waveguide, -z, is of the form exp( –j@z), where @ is

the propagation constant and j = ~. Thus, in Maxwell’s

equations the z derivatives are replaced with –j/? and the

numerical discretization is restricted only on the cross-section

of the waveguide. Fig. 1 depicts the unit cell of the 2-D lattice

proposed in [1] for the discretization of Maxwell’s equations

over the cross-section of the waveguide, For example, the

discrete form of the z component of Maxwell’s first curl

equation

~=”K%-~) ‘1)

becomes

H;+l/2(p, q + 1/2)

= H;-’/’(p, q + 1/2)

At

[

E;(p, q + 1) – ~;(l% 4
—

xl% ~ + 1/2) Ay

1-1-~B-q(P>q+1/2),(3
where the notation F“ (P, q) = l’(p~$, q~v, ~~~) (P, 9, ~

integers) has been adopted for the representation of the ap-
proximated tleld components. In (2L At is the time step,
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Fig. 1. The unit cell of the compact 2-D/FDTD lattice proposed in [1].

Ax is the cell size along z, A~ is the cell size along y,

and central differences both in space and time have been

used for the numerical approximation of the space and time

derivatives. The rest of the scalar equations obtained frclm

the two Maxwell’s curl equations are discretized in a similar

manner.

The solution of the discrete equations proceeds as follows.

First, a desirable value for/3 is selected along with some initial

value for the fields over the cross-section of the guide. Ne~t,

the equations are integrated in time and, subsequently, tihe

time histories of the fields are Fourier-transformed to obtain

the frequencies at which the various propagating modes in

the guide exhibit the selected propagation constant ~. These

frequencies correspond to the peaks in the Fourier spectra.

In the following, the stability condition for this compact

2-D/FDTD scheme is derived. In addition, the numerical

dispersion equation is obtained and used to comment on tlhe

impact of the cell size on the accuracy of the calculated

eigenvalues (frequencies) for the various modes.

II. STABILITY CONDITION

The development of the stability condition follows tlhe
and ysis presented in [3] for the standard FDTD scheme

in a homogeneous, lossless medium with permittivity e and

permeability p. In [3], it was shown that the numerical

integration of Maxwell’s equations on a rectangular FDTD

lattice with cell size A$, Ay, Az and time step At results in
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stable wave solutions of the form

[
E = 130 exp j(w(nAt) – &(pAz)

-&(qAY) - MTAZ))] (3a)

[
H = llo exp j(u(nAt) – ~x(pAx)

-ri,(A/) - L(TAz))] (3b)

provided that

(-)vAt 2 kzAz

()

vAt 2 . ~ &Ay

Ax
sinz — —

2 + Ay
sln —

2

+

where v = (ue)–112, and

wavenumbers along x, y, .z,

straightforward to obtain the

the standard FDTD scheme

HvAt 2 -
sin

z k,A,z

Az
— <1, (4)

2

~z, kY, ~z are the numerical

respectively, From (4) it is

familiar stability condition for

[ 1-2
L

— —‘Ats (A:)2 + (A:)2 + & “
(5)

For the compact 2-D/FDTD scheme, the derivative along z

is calculated exactly and kz = ~. Thus, taking the limit of the

third term on the right-hand side of (4) as Az -i O yields

(-)

vAt 2 “~ kZAx

()

vAt 2 “
sin ~+ —

sinz kYAy

()

vAt~ 2 ~ ~

Ax Ay
~+y..

(6)

From (6), the stability condition for the compact 2-D/FDTD

scheme is easily obtained

[ ()]P’-+
‘At< (A:)2 + (A:)2 + ~ “

(7)

It must be mentioned that this result was actually reported for

the first time in [4] in the context of numerical simulations of

transient electromagnetic wave propagation in inhomogeneous

media.

III. NUMERICAL DISPERSION EQUATION

The numerical dispersion relation for the standard FDTD

scheme is [5]

‘ wAt ()vAt 2 . ‘ &Ax

()

vAt 2
sin — —

2 = Ax
sln — —

2 + fly
. 2“

, sin2 /kyAy

()

vAt
~+ ~

z kZAz
sin —.

2
(8)

In a manner similar to that used for deriving (7) from (4),

the numerical dispersion relation for the ~ompact 2-D/FDTD

method is obtained from (8) by letting k. = /3 and taking

the limit of the third term on the right-hand side as A.z A O.

This yields

()

vAt 2 A‘w At_ _ 2 kzAx

()

vAt 2
sin —

2–Ax
sin — —

2 + Ay
.

~in2 kVAy

()

vAtfi 2
~+y. (9)

IV. DISCUSSION

For simplicity, consider the case of a square lattice (Ax =

Ay = h). Then (7) yields

[()]_<z+ ~’-+.vAt

h–
(10)

From (10), it is clear that, contraty to the statement in [1], the

upper limit for the Courant number, vAt /h, for the compact

2-D/FDTD is smaller than the familiar value of I/@ which

is obtained for the standard 2-D/FDTD scheme. It is only

at cutoff (~ = O) where the Courant limit for the compact

2-D/FDTD method coincides with that for the standard 2-

D/FDTD, as expected. However, if the cell size is chosen

sufficiently small compared to the guide wavelength Ag =

27r/~, the reduction in the Courant limit is negligible. Indeed,

for ,8h = 0.1 the Courant limit is 0.70666525 compared to its

value of 0.70710678 for the standard 2-D/FDTD.

The accuracy of the eigenfrequencies calculated using the

compact 2-D/FDTD scheme can be analyzed on the basis of

the numerical dispersion equation (9) as follows. For the sake

of discussion, the case of a square air-filled metallic waveguide

with perfectly conducting walls is considered. A square lattice

of size h and iV elements per side is used for the discretization

of the cross-section of the guide. Thus, Nh = a, where a is

the length of the side of the square cross-section. Since the

tangential electric field is zero on the perfectly conducting

walls, k.(Nh) = in and kY(Nh) = mm, where 1,m are

integers. Letting s = cAt/h, where c is the speed of light in

air, the numerical wavelength ~t,n for the (1, m) mode with

propagation constant @ is obtained from (9)

L,m= 71s

a

{[

24

()]}
Nsin–l s sin2 ~ + sin’ ~ + ~

(11)

From (1 1), it is straightforward to show that as N ~ co (and

thus, h + O) ~l,m approaches its exact value Jl,m given by

*=2~2+m’+(32]-’. (12)

In order to demonstrate the impact of the cell size h on the

accuracy of the calculated eigenfrequencies, ( 11) is used for

the case of an air-filled square waveguide of side a = 3 cm.
The propagation constant is taken to be ~ = 209.4395 m-’.

Figs. 2 and 3 depict the variation with the number of cells, N,

of the percentage relative error in ~1,m defined as

for s = 0.6 and s = 0.25, respectively, for various modes in

the guide. From (11) and the fact that sin z w AZ is a very

good approximation for z = 7r/16, one expects Jz,m to be a

very close approximation of Al,m for N > 81 and N > 8m,

provided that (@a/N) << 1. Figs. 2 and 3 support this

conjecture. In addition, while the accuracy of the numerical
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Fig. 2. Variation with the number of cells, N, of the percentage relative
error in the numerical wavelength for various modes in an air-filled square
waveguide of side a = 3 cm. Tbe propagation constant is 209.4395 m– 1 and
the Conrarrt number is 0.6.

wavelength for TEIO and TE1l is enhanced as s is decreased

from 0.6 to 0.25, it is clear from Figs. 2 and 3 that the

accuracy of the numerical wavelength for the higher-order

modes deteriorates for low values of iV.

V. CONCLUSION

In summary, this letter has considered the numerical stability

and numerical dispersion of the compact 2-D/FDTD method

proposed in [1] for the dispersion analysis of waveguiding

structures. While the method removes the need for numerical

discretization along the direction of propagation, the propa-

gation constant P has still an impact on the proper choice

of the grid size h in the discretization of the cross section

of the guide. More specifically, if h is chosen such that

/3h <1, the Courant limit for the compact 2-D/FDTD method

is only slightly reduced from that for the standard 2-D/FDTD

method. Furthermore, the numerical dispersion analysis for the
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Fig. 3. Variation with the number of cells, N, of the percentage relative
error in the numericat wavelength for various modes in an air-filled square
waveguide of side a = 3 cm. The propagation constant is 209.4395 m– 1 and
the Courant number is 0.25.

simple case of an air-filled rectangular waveguide indicates

that the choice /3h <<1 is consistent with the requirements for

calculating the eigenfrequencies with high accuracy.
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