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Numerical Stability and Numerical Dispersion
of a Compact 2-D/FDTD Method Used for
the Dispersion Analysis of Waveguides

Andreas C. Cangellaris, Member, IEEE

Abstract— The stability condition is derived for the compact
two-dimensional FDTD (2-D/FDTD) scheme which was recently
proposed for the dispersion analysis of waveguiding structures.
It is shown that the upper limit of the Courant number depends
on the desirable propagation constant 5 and is always smaller
than the one for the standard FDTD scheme in two dimensions.
The dispersion equation for the numerical scheme is derived also
and is used to examine the impact of grid size on the accuracy
of the calculated eigenvalues (frequencies) for the dominant and
higher order modes.

{. INTRODUCTION

N a recent paper [1], a compact 2-D/FDTD method was

proposed for the dispersion analysis of uniform waveg-
uiding structures. The proposed method, which is similar to
the method presented in [2], takes advantage of the fact that
for propagating modes the field variation along the axis of
the waveguide, z, is of the form exp(—jB3z), where 3 is
the propagation constant and j = v/—1. Thus, in Maxwell’s
equations the z derivatives are replaced with —j3 and the
numerical discretization is restricted only on the cross-section
of the waveguide. Fig. 1 depicts the unit cell of the 2-D lattice
proposed in [1] for the discretization of Maxwell’s equations
over the cross-section of the waveguide. For example, the
discrete form of the z component of Maxwell’s first curl
equation
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where the notation F"(p,q) = F(pAz,qAy,nAt) (p,q,n
integers) has been adopted for the representation of the ap-
proximated field components. In (2), Af is the time step,
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Fig. 1. The unit cell of the compact 2-D/FDTD lattice proposed in [1].

Az is the cell size along z, Ay is the cell size along y,
and central differences both in space and time have been
used for the numerical approximation of the space and time
derivatives. The rest of the scalar equations obtained from
the two Maxwell’s curl equations are discretized in a similar
manner.

The solution of the discrete equations proceeds as follows.
First, a desirable value for 3 is selected along with some initial
value for the fields over the cross-section of the guide. Next,
the equations are integrated in time and, subsequently, the
time histories of the fields are Fourier-transformed to obtain
the frequencies at which the various propagating modes in
the guide exhibit the selected propagation constant 3. These
frequencies correspond to the peaks in the Fourier spectra.

In the following, the stability condition for this compact
2-D/FDTD scheme is derived. In addition, the numerical
dispersion equation is obtained and used to comment on the
impact of the cell size on the accuracy of the calculated
eigenvalues (frequencies) for the various modes.

II. STABILITY CONDITION

The development of the stability condition follows the
analysis presented in [3] for the standard FDTD scherne
in a homogeneous, lossless medium with permittivity e and
permeability p. In [3], it was shown that the numerical
integration of Maxwell’s equations on a rectangular FDTD
lattice with cell size Az, Ay, Az and time step Af results in
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stable wave solutions of the form
E = Egexp [j(w(nAt) — ko (pAx)

~ky(qAy) - ffz(TAZ))] (3a)
H = Hjexp [j(w(nAt) — ki (pAx)
—ky(gAy) - EZ(TAZ))] (3b)

provided that
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where v = (ue)™Y/2, and k,,ky, k. are the numerical
wavenumbers along z,y,2, respectively. From (4) it is
straightforward to obtain the familiar stability condition for
the standard FDTD scheme
1 1 B
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For the compact 2—D/FI?TD scheme, the derivative along 2
is calculated exactly and k, = (3. Thus, taking the limit of the
third term on the right-hand side of (4) as Az — 0 yields
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From (6), the stability condition for the compact 2-D/FDTD
scheme is easily obtained

wAL < [mm(ﬁ)

It must be mentioned that this result was actually reported for
the first time in [4] in the context of numerical simulations of
transient electromagnetic wave propagation in inhomogeneous
media.
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III. NUMERICAL DISPERSION EQUATION

The numerical dispersion relation for the standard FDTD

scheme is [5]
sin? wAl _ (vAl 2sin2 keia + vai 2
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N AN? ok
- sin? yTy + (UA—Z> sin? —zzé—z—

In a manner similar to that used for deriving (7) from (4),
the: numerical dispersion relation for the compact 2-D/FDTD
method is obtained from (8) by letting k. = [ and taking

the limit of the third term on the right-hand side as Az — 0.
This yields
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IV. DISCUSSION

For simplicity, consider the case of a square lattice (Az =
Ay = h). Then (7) yields

Bh\*
2+ () ]
From (10), it is clear that, contrary to the statement in [1], the
upper limit for the Courant number, vAt/h, for the compact
2-D/FDTD is smaller than the familiar value of 1/4/2 which
is obtained for the standard 2-D/FDTD scheme. It is only
at cutoff (8 = 0) where the Courant limit for the compact
2-D/FDTD method coincides with that for the standard 2-
D/FDTD, as expected. However, if the cell size is chosen
sufficiently small compared to the guide wavelength A, =
27 /3, the reduction in the Courant limit is negligible. Indeed,
for Sh = 0.1 the Courant limit is 0.70666525 compared to its
value of 0.70710678 for the standard 2-D/FDTD.

The accuracy of the eigenfrequencies calculated using the
compact 2-D/FDTD scheme can be analyzed on the basis of
the numerical dispersion equation (9) as follows. For the sake
of discussion, the case of a square air-filled metallic waveguide
with perfectly conducting walls is considered. A square lattice
of size h and N elements per side is used for the discretization
of the cross-section of the guide. Thus, Nh = a, where a is
the length of the side of the square cross-section. Since the
tangential electric field is zero on the perfectly conducting
walls, ko(Nh) = Ir and ky,(Nh) = mm, where [,m are
integers. Letting s = c¢At/h, where ¢ is the speed of light in
air, the numerical wavelength X,,m for the (l,m) mode with
propagation constant 3 is obtained from (9)
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From (11), it iAs straightforward to show that as N — oo (and
thus, h — 0) A; ., approaches its exact value }; ., given by
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w

In order to demonstrate the impact of the cell size A on the
accuracy of the calculated eigenfrequencies, (11) is used for
the case of an air-filled square waveguide of side a = 3 cm.
The propagation constant is taken to be 5 = 209.4395 m~".
Figs. 2 and 3 depict the variation with the number of cells, N,
of the percentage relative error in ;\l,m defined as
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Am = Aum 100

Relative Error = ,
/\l,m

13)
for s = 0.6 and s = 0.25, respectively, for various modes in
the guide. From (11) and the fact that sinxz ~ z is a very
good approximation for x = /16, one expects j\l,m to be a
very close approximation of A;,, for N > 8l and N > 8m,
provided that (8a/N) < 1. Figs. 2 and 3 support this
conjecture. In addition, while the accuracy of the numerical
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Fig. 2. Variation with the number of cells, N, of the percentage relative
error in the numerical wavelength for various modes in an air-filled square

waveguide of side @ = 3 cm. The propagation constant is 209.4395 m—! and
the Courant number is 0.6.

wavelength for TE;y and TE;; is enhanced as s is decreased
from 0.6 to 0.25, it is clear from Figs. 2 and 3 that the
accuracy of the numerical wavelength for the higher-order
modes deteriorates for low values of N.

V. CONCLUSION

In summary, this letter has considered the numerical stability
and numerical dispersion of the compact 2-D/FDTD method
proposed in [1] for the dispersion analysis of waveguiding
structures. While the method removes the need for numerical
discretization along the direction of propagation, the propa-
gation constant § has still an impact on the proper choice
of the grid size h in the discretization of the cross section
of the guide. More specifically, if h is chosen such that
Bh « 1, the Courant limit for the compact 2-D/FDTD method
is only slightly reduced from that for the standard 2-D/FDTD
method. Furthermore, the numerical dispersion analysis for the
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Fig. 3. Variation with the number of cells, NV, of the percentage relative
error in the numerical wavelength for various modes in an air-filled square

waveguide of side @ = 3 cm. The propagation constant is 209.4395 m—" and
the Courant number is 0.25.

simple case of an air-filled rectangular waveguide indicates
that the choice Sh < 1 is consistent with the requirements for
calculating the eigenfrequencies with high accuracy.
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